
jovan@mqsoft.rs

Antifragility
add method to the madness of software development

mailto:jovan@mqsoft.rs

Fragility
agile on waterfall budget:

- flexible scope

- fixed price

- fixed time

Why Agile?
challenges:

- I will know it when I see it

- FOMO

- Estimations

- Parkinson's law

- Definition of Done Done

- Backlog

What to take from
SCRUM?
- divide-and-conquer or "big"

vs "small"

- let's do it together or no

blaming allowed

- User Stories

- small team

- short meetings

Antifragility

• Fragility is the tendency of the
software to break in many places
every time it is changed.

• Antifragility is a property of systems
in which they increase in capability to
thrive as a result of stressors, shocks,
volatility, noise, mistakes, faults,
attacks, or failures.

• Antifragility is fundamentally different
from the concepts of resiliency (i.e.
the ability to recover from failure) and
robustness (that is, the ability to
resist failure).

Antifragile system "loves erros". Software engineers do not.

Antifragility

To move on to becoming

antifragile then requires a

combination of low fixed

obligations with making small

bets that have asymmetric

payoffs.

Kintsugi & Kaizen

Shape Up

• wireframes are too concrete

• words are too abstract

• use "The OneThing" approach

• JOMO instead of FOMO

Setting the Appetite

An appetite is completely different
from an estimate. Estimates start with
a design and end with a number.
Appetites start with a number and end
with a design. We use the appetite as
a creative constraint on the design
process.

Sprints?

• 3 week Sprint

• .. but do Sprint Review at the end of
every second Sprint

• work on DEV in Sprint N

• work on UAT in Sprint N+1

• do reviews on PrePROD

NOTASAP

The expectation of immediate response is

everywhere. Real-time everything isn’t human-

scale, yet that’s how so many work and

communicate these days. Not us. We think

urgency is overrated, and ASAP is poison. Real-

time is the wrong time most of the time.

 https://37signals.com/

Budget?

• pick a Fibonacci number that feel like You can afford to
spend working on Demo version

• skip one number and the next is the time You allocate do
make a version worth of formal User Acceptance Testing

• end the next one is the time You allocate to work on the
Project

• pick weight (day, week, month, Sprint) of the number: that
is Your complexity

• You got big value You don't like: split the Project in phases

• use minimal team

Art of Wu Wei

• Discovery vs Invention

• Do not Force

• .. but put some pressure

• happy people do great stuff!

don't stress: the project IS out of control

Thank You

	Slide 1: Antifragility
	Slide 2: Fragility
	Slide 3: Why Agile?
	Slide 4: What to take from SCRUM?
	Slide 5: Antifragility
	Slide 6: Antifragility
	Slide 7: Shape Up
	Slide 8: Setting the Appetite
	Slide 9: Sprints?
	Slide 10: Budget?
	Slide 11: Art of Wu Wei
	Slide 12
	Slide 13

